On the Koebe Quarter Theorem for Polynomials

نویسندگان

چکیده

The Koebe One Quarter Theorem states that the range of any Schlicht function contains centered disc radius 1/4 which is sharp due to value at −1. A natural question finding polynomials set sharpness for polynomials. In particular, it was asked in [7] whether Suffridge [15] are optimal. For degree 1 and 2 obviously true. It demonstrated [10] 3 not optimal a promising alternative family introduced. These very were actually discovered earlier independently by M. Brandt [3] D. Dimitrov [9]. current article we reintroduce these way make far-reaching conjecture verify up 6 with computer aided proof 52. We then discuss ensuing estimates specific degree.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theorem on Difference Polynomials

We shall prove the following analogue of a theorem of Kronecker's : Let J be a difference field containing an element t which is distinct from its transforms of any order. Every perfect ideal in the ring 7\yu ' ' ' y y<n\ has a basis consisting of n + 1 difference polynomials. The corresponding theorem for differential polynomials was proved by J. F. Ritt. We shall follow in all but details a b...

متن کامل

Rakhmanov's theorem for orthogonal matrix polynomials on the unit circle

Rakhmanov’s theorem for orthogonal polynomials on the unit circle gives a sufficient condition on the orthogonality measure for orthogonal polynomials on the unit circle, in order that the reflection coefficients (the recurrence coefficients in the Szegő recurrence relation) converge to zero. In this paper we give the analog for orthogonal matrix polynomials on the unit circle. 1. Rakhmanov’s t...

متن کامل

Aizenman’s Theorem for Orthogonal Polynomials on the Unit Circle

For suitable classes of random Verblunsky coefficients, including independent, identically distributed, rotationally invariant ones, we prove that if E (∫ dθ 2π ∣∣∣ ( C + eiθ C − eiθ ) k ∣∣∣ p) ≤ C1e−κ1|k− | for some κ1 > 0 and p < 1, then for suitable C2 and κ2 > 0, E ( sup n |(C)k | ) ≤ C2e−κ2|k− |. Here C is the CMV matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ????? ???????????? ????????????? ??????

سال: 2022

ISSN: ['2072-9812', '2409-8906']

DOI: https://doi.org/10.15673/tmgc.v14i3.2057